Mesiac: august 2023

METODIKA ZBERU A ANALÝZY OSVEDČENÝCH POSTUPOV V OBLASTI APLIKOVANEJ UMELEJ INTELIGENCIE

METODIKA ZBERU A ANALÝZY OSVEDČENÝCH POSTUPOV V OBLASTI APLIKOVANEJ UMELEJ INTELIGENCIE

Práca je realizovaná v rámci projektu Erasmus+ „Budúcnosť je v aplikovanej umelej inteligencii“ (FAAI) a venuje sa vypracovaniu metodiky zberu a analýzy dobrej praxe v oblasti aplikovanej umelej inteligencie (AAI), pokiaľ ide o kompetencie, školenia, existujúce riešenia a reálne prípady, ktoré môžu byť využité pri tvorbe školení vzdelávania založeného na kompetenciách. Navrhujeme tu definíciu dobrej praxe v oblasti AAI spolu s príslušnými kritériami a vlastnosťami. Navrhovaná metodika využíva systémový výskum založený na údajoch získaných z existujúcich vzdelávacích kurzov v oblasti AAI, trhu práce, prieskumov vyplnených akademickými pracovníkmi, študentmi a zamestnávateľmi, prípadov použitia AAI vo vede a priemysle.

Celý dokument nájdete pod týmto odkazom:Methodology_collection_SK

RÁMEC KOMPETENCIÍ

RÁMEC KOMPETENCIÍ

Tento výsledok načrtáva iniciatívu v oblasti vzdelávania zameranú na rozvoj rámca kompetencií v oblasti AAI. Tento prístup zahŕňa analýzu a začlenenie rôznych štandardov kompetencií, napríklad ACM a IEEE. Obsah rámca sa zameriava na zahrnutie oblastí znalostí, špecifikáciu rozsahu, kompetencií a subdomén. Subdomény sú ďalej podrobne rozpracované prostredníctvom zahrnutia zodpovedajúcich vedomostí, zručností a dispozícií. Cieľom tohto komplexného prístupu je vytvoriť pevný základ pre rozvoj kompetencií v rýchlo sa rozvíjajúcej oblasti AAI.

Celý dokument nájdete tu:A3_2 Competence_framework_SK

POŽIADAVKY NA UČENIE UMELEJ INTELIGENCIE

POŽIADAVKY NA UČENIE UMELEJ INTELIGENCIE

Konzorcium projektu The Future is in Applied Artificial Intelligence navrhlo prvý učebný plán založený na kompetenciách v oblasti aplikovanej umelej inteligencie na úrovni vysokých škôl. Vývoj vychádzal z pokročilého systémového výskumu existujúcich zdrojov súvisiacich s umelou inteligenciou a prieskumu cieľových skupín učiteľov, študentov informačných technológií a zamestnávateľov, ktorý by mal zvýšiť výkonnosť implementácie vzdelávania v oblasti umelej inteligencie. Prehľad aplikovanej umelej inteligencie bol pripravený formou zoskupenia kľúčových slov. Východiskové údaje boli získané pomocou prieskumu, zhromažďovania pracovných ponúk, existujúcich vzdelávacích kurzov v oblasti umelej inteligencie, vedeckých projektov a reálnych prípadov. Syntetická analýza textových informácií zo štúdií sa uskutočnila pomocou techniky mrakov slov. Na prezentáciu kurzu založeného na kompetenciách sa použil tenzorový prístup. Konkrétne číselné požiadavky na kurz vo forme priorít vyplývajú z riešenia rozhodovacích problémov pomocou techniky analytického hierarchického procesu.Na základe komplexného štúdia prieskumov, vzdelávacích skúseností, vedeckých projektov a požiadaviek podnikov, metaanalýzy najnovších referencií sme špecifikovali kritériá vzdelávacieho kurzu vo forme tenzorového zobrazenia kompetencií vo vzťahu k obsahu a vzdelávacím modulom.

Celý článok nájdete tu:A3_3_LearningRequirements_SK

EXISTUJÚCE KURZY ODBORNEJ PRÍPRAVY V OBLASTI APLIKOVANEJ UI

EXISTUJÚCE KURZY ODBORNEJ PRÍPRAVY V OBLASTI APLIKOVANEJ UI

Dotazník, ktorý je predmetom tohto dokumentu, je súčasťou výskumu v súvislosti s cieľmi projektu 2022-1-PL01-KA220-HED-000088359 „The Future is in Applied Artificial Intelligence“ (FAAI) v rámci programu Erasmus+. Cieľom tohto projektu je spojiť univerzity a podniky a poskytnúť inovatívne riešenia na rozvoj odborníkov na umelú inteligenciu. Otázky v tejto štúdii boli zamerané na výskum potrieb a očakávaní podnikateľských organizácií s cieľom navrhnúť vzdelávanie odborníkov v oblasti aplikovanej umelej inteligencie. V tomto dokumente sa uvádza stručný prehľad ponúkaných vzdelávacích kurzov v oblasti aplikovanej umelej inteligencie a ich opis. Napriek existujúcim ponúkaným školeniam je potrebné zosumarizovať a odvodiť informácie o témach požadovaných a obsiahnutých v rámci školení v oblasti aplikovanej umelej inteligencie.

Celý dokument nájdete tu:Research 1 UoM Prepare State-of-the-art analysis on Existing Training Courses in the Field of Applied AI_SK

ŠTÚDIA TRHU PRÁCE V OBLASTI APLIKOVANEJ UI

ŠTÚDIA TRHU PRÁCE V OBLASTI APLIKOVANEJ UI

Tento dotazník je súčasťou výskumu v súvislosti s cieľmi projektu 2022-1-PL01-KA220-HED-000088359 „The Future is in Applied Artificial Intelligence“ (FAAI) v rámci programu Erasmus+. Cieľom tohto projektu je spojiť univerzity a podniky a poskytnúť inovatívne riešenia na rozvoj odborníkov na umelú inteligenciu. Otázky v tejto štúdii boli zamerané na výskum potrieb a očakávaní podnikateľských organizácií s cieľom navrhnúť vzdelávanie odborníkov v oblasti aplikovanej umelej inteligencie. Prehľad ponúkaných vzdelávacích kurzov v oblasti aplikovanej umelej inteligencie a ich opis.

Celý dokument nájdete tu:Research 2 SOA Labor market_SK

PREHĽAD VEDECKÝCH PROJEKTOV V OBLASTI APLIKOVANEJ UI

PREHĽAD VEDECKÝCH PROJEKTOV V OBLASTI APLIKOVANEJ UI

Zozbierané a analyzované boli dotazníky o 63 projektoch partnerských organizácií z 5 krajín, ktoré sa týkali výučby umelej inteligencie. Koordinátori projektov boli z 19 krajín. Medzi zaujímavejšie výsledky patrí zistenie, že viac ako polovica projektov sa týkala výučbových modulov hlbokých neurónových sietí a väčšina úloh strojového učenia, ktoré sa riešili, sa týkala spracovania obrazu, klasifikácie, regresie, zhlukovania a spracovania prirodzeného jazyka. Medzi použitými knižnicami AI dominovali TensorFlow, Keras, scikit-learn a CUDA. Programovacími jazykmi boli Python a C++.

Väčšina odpovedí bola analyzovaná a vizualizovaná vo forme grafov.

Celý dokument nájdete tu:Research 3 StateOfTheArt_scientificprojects_SK

PRIESKUM PRE AKADEMICKÝCH PRACOVNÍKOV (LEKTOROV) V OBLASTI APLIKOVANEJ UI

PRIESKUM PRE AKADEMICKÝCH PRACOVNÍKOV (LEKTOROV) V OBLASTI APLIKOVANEJ UI

Zozbierané a analyzované boli dotazníky 80 učiteľov z 5 krajín, ktoré sa týkali vyučovania umelej inteligencie. Medzi zaujímavejšie výsledky patrí zistenie, že väčšina učiteľov sa v oblasti umelej inteligencie vzdeláva sama, väčšina z nich sa nikdy nezúčastnila na komerčnom projekte týkajúcom sa umelej inteligencie, ale väčšina učiteľov by privítala rozšírenú účasť odborníkov z priemyslu na výučbe študentov. Z ich odporúčaní možno vybrať napr. rady:

Zamerajte sa viac na bezplatné verzie.

  • Najskôr si vyberte vhodný výpočtový jazyk a knižnice
  • Venovať pozornosť počítačovému videniu, vysvetľujúcej umelej inteligencii, interakcii človeka s umelou inteligenciou
  • Pridať viac aktivít zameraných na riešenie príkladov
  • Riešenie skutočných prípadov umelej inteligencie na hodinách

Väčšina odpovedí bola analyzovaná a vizualizovaná vo forme grafov.

Celý dokument nájdete tu:Research 4 StateOfTheArt_teachers_SK

DOTAZNÍK PRE IT ŠTUDENTOV, ABSOLVENTOV BAKALÁRSKEHO, MAGISTERSKÉHO A DOKTORANDSKÉHO ŠTÚDIA V OBLASTI INFORMAČNÝCH SYSTÉMOV A TECHNOLÓGIÍ

DOTAZNÍK PRE IT ŠTUDENTOV, ABSOLVENTOV BAKALÁRSKEHO, MAGISTERSKÉHO A DOKTORANDSKÉHO ŠTÚDIA V OBLASTI INFORMAČNÝCH SYSTÉMOV A TECHNOLÓGIÍ

Táto štúdia vychádza z rozsiahleho prieskumu realizovaného v rámci aktivít pri realizácii projektu Erasmus+ „Budúcnosť je v aplikovanej umelej inteligencii (FAAI)“. Prieskum bol zameraný na prieskum potrieb a očakávaní absolventov magisterského štúdia IT a absolventov IT v oblasti informačných systémov a technológií v súvislosti s rôznymi témami aplikovanej umelej inteligencie s cieľom preskúmať znalosti a postoje študentov k obsahu umelej inteligencie, súčasný stav vzdelávania v oblasti umelej inteligencie a budúce smerovanie transformácie vzdelávacieho systému smerom ku vzdelávaniu založenému na kompetenciách.

Celý dokument nájdete tu:Research 5 StateOfArt_students_SK

DOTAZNÍK PRE ZAMESTNÁVATEĽOV: IDENTIFIKÁCIA KOMPETENCIÍ ABSOLVENTOV V OBLASTI APLIKOVANEJ UMELEJ INTELIGENCIE

DOTAZNÍK PRE ZAMESTNÁVATEĽOV: IDENTIFIKÁCIA KOMPETENCIÍ ABSOLVENTOV V OBLASTI APLIKOVANEJ UMELEJ INTELIGENCIE

FAAI je projekt ERASMUS+, ktorého cieľom je vyhodnotiť existujúce systémy a nástroje umelej inteligencie a vytvoriť spoločnú kompetenciu EÚ v oblasti systémov budovania zručností, ktoré využívajú schopnosti umelej inteligencie v sektore MSP. Cieľom projektu je zlepšiť kvalitu a relevantnosť vedomostí a zručností študentov a absolventov v oblasti AI/ML na základe zručností potrebných na trhu práce. Prieskum sa uskutočnil v rámci projektu FAAI s cieľom posúdiť potreby zamestnávateľov v oblasti kompetencií absolventov v oblasti umelej inteligencie, strojového učenia a dátovej vedy vo všeobecnosti. Cieľom prieskumu bolo preskúmať potreby a očakávania zamestnávateľov a spoločností v oblasti vzdelávania odborníkov v oblasti aplikovanej umelej inteligencie. Na prieskume sa zúčastnilo celkovo 38 spoločností, čo poskytuje dobrý východiskový bod na preskúmanie a analýzu ich potrieb v oblasti aplikovanej umelej inteligencie. Prieskum pozostával z 31 otázok vrátane otázok o potrebných všeobecných kompetenciách, type problémov strojového učenia, ktoré sa majú riešiť, a knižniciach AI používaných v spoločnostiach.

Prieskum obsahoval aj otázky týkajúce sa požadovaných mäkkých zručností, ďalších potrebných kompetencií, spokojnosti zamestnávateľov s úrovňou prípravy absolventov AI a názorov na zvyšovanie kvalifikácie súčasných zamestnancov organizácií tým, že im umožnia študovať AI na magisterskej úrovni.

Celý dokument nájdete tu:Research 6 Questionnaire for employers_AI_SK

ZHROMAŽĎOVANIE IT ŠPECIFIKÁCIÍ OSVEDČENÝCH POSTUPOV V OBLASTI UI

ZHROMAŽĎOVANIE IT ŠPECIFIKÁCIÍ OSVEDČENÝCH POSTUPOV V OBLASTI UI

Práca predstavuje štúdiu špecifikácií osvedčených postupov v aplikovanej umelej inteligencii (AAI – Applied Artificial Intelligence). Analýza 25 dotazníkov z piatich partnerských inštitúcií odhalila kľúčové poznatky o súčasnom stave projektov umelej inteligencie (UI) a strojového učenia (ML -Machine Learning). Školenia, ktoré sa uskutočnili v Srbsku a Bulharsku, signalizovali potrebu rozšírenia možností v krajinách EÚ. Výsledkom štúdie bolo zistenie, že prevláda Deep ML, najmä v oblasti konvolučných neurónových sietí, zatiaľ čo metóda Gated Recurrent Unit je menej rozšírená. Typické sú objemy údajov od 1 GB do 1 TB, čo odráža praktické obmedzenia. Aplikácie umelej inteligencie pokrývajú rôzne oblasti, pričom v knižniciach vedie TensorFlow. Najrozšírenejšie sú permisívne licencie, primárnym zdrojom údajov sú databázy a v charakteristikách údajov dominujú texty/obrázky. Na ukladanie sa uprednostňujú databázy NoSQL. Bezpečnostné funkcie a nástroje na spracovanie údajov sa líšia. Široko sa používajú špecializované servery a klastre, prominentné sú odporúčacie systémy, preferovaným jazykom je Python a v ekosystémoch dominuje Apache Hadoop. Bezplatné súbory údajov podporujú dostupnosť. Celkovo zistenia zdôrazňujú dynamickú povahu projektov AI/ML a poskytujú základ pre budúci výskum v tejto rýchlo sa rozvíjajúcej oblasti.

Celý dokument nájdete tu:Research 7 StateOfTheArt_V3_SK