Article: Mathematical and Computer Simulation of the Response of a Potentiometric Biosensor for the Determination of α-сhaconine
The article is devoted to the problem of developing a mathematical model of the response of a potentiometric biosensor for the determination of α-chaconine in the form of a system of seven differential equations that describe the dynamics of biochemical reactions during the full cycle of α-chaconine concentration measurement. At the same time, each of the differential equations establishes the concentration dependence of substrate, enzyme, inhibitor, enzyme-substrate, product, enzyme-inhibitor, enzyme-substrate-inhibitor complexes as a function of time. The mathematical model of the biosensor for the determination of α-chaconine was solved numerically in the R package. The input parameters of the system were used, namely, the concentrations of the enzyme, substrate, and inhibitor (5.8×10-4 M butyrylcholinesterase, 1×10-3 M butyrylcholine chloride, and 1×10−6; 2×10−6; 5×10−6; 10×10−6 M of α-chaconine, respectively), which are measured during experiments. To verify the model and compare it with the experimental response a potentiometric biosensor based on immobilized butyrylcholine chloride was used. Selection of direct and inverse rate constants of enzymatic reactions was carried out in such a way that the result of numerical modeling corresponded as much as possible to the experimental response of the studied biosensor. A comparative analysis of the experimental and simulated responses of the biosensor for the determination of αchaconine was established. It was found that the absolute error does not exceed 0.045 units. As a result of computer simullation, it was concluded that the developed kinetic model of the potentiometric biosensor makes it possible to identify all the main components that were measured this study.
The full paper can be found here: https://ceur-ws.org/Vol-3468/paper1.pdf
The audio version is available: